clusterSim

Searching for Optimal Clustering Procedure for a Data Set

CRAN Package

Distance measures (GDM1, GDM2, Sokal-Michener, Bray-Curtis, for symbolic interval-valued data), cluster quality indices (Calinski-Harabasz, Baker-Hubert, Hubert-Levine, Silhouette, Krzanowski-Lai, Hartigan, Gap, Davies-Bouldin), data normalization formulas (metric data, interval-valued symbolic data), data generation (typical and non-typical data), HINoV method, replication analysis, linear ordering methods, spectral clustering, agreement indices between two partitions, plot functions (for categorical and symbolic interval-valued data). (doi:10.1007/BF02294245, doi:10.1007/BF01908075, doi:10.1080/01621459.1971.10482356, doi:10.1007/978-3-642-57280-7_11, doi:10.1007/BF01897163, doi:10.1007/978-3-642-55721-7_12, doi:10.1109/TPAMI.1979.4766909, doi:10.1080/03610927408827101, doi:10.1080/01621459.1974.10480191, doi:10.1111/1467-9868.00293, doi:10.1207/S15327906MBR3502_5, doi:10.1007/978-3-540-78246-9_11)


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends2 packages
  • Imports2 packages
  • Suggests2 packages
  • Reverse Depends2 packages
  • Reverse Imports7 packages
  • Reverse Suggests3 packages