clustrd
Methods for Joint Dimension Reduction and Clustering
A class of methods that combine dimension reduction and clustering of continuous, categorical or mixed-type data (Markos, Iodice D'Enza and van de Velden 2019; doi:10.18637/jss.v091.i10). For continuous data, the package contains implementations of factorial K-means (Vichi and Kiers 2001; doi:10.1016/S0167-9473(00)00064-5) and reduced K-means (De Soete and Carroll 1994; doi:10.1007/978-3-642-51175-2_24); both methods that combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means (Hwang, Dillon and Takane 2006; doi:10.1007/s11336-004-1173-x), i-FCB (Iodice D'Enza and Palumbo 2013, doi:10.1007/s00180-012-0329-x) and Cluster Correspondence Analysis (van de Velden, Iodice D'Enza and Palumbo 2017; doi:10.1007/s11336-016-9514-0), which combine multiple correspondence analysis with K-means. For mixed-type data, it provides mixed Reduced K-means and mixed Factorial K-means (van de Velden, Iodice D'Enza and Markos 2019; doi:10.1002/wics.1456), which combine PCA for mixed-type data with K-means.
- Version1.4.0
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- Last release07/16/2022
Team
Angelos Markos
Michel van de Velden
Show author detailsRolesAuthorAlfonso Iodice D'Enza
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports10 packages
- Reverse Suggests2 packages