cmfrec
Collective Matrix Factorization for Recommender Systems
Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969> tries to approximate a (potentially very sparse or having many missing values) matrix 'X' as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of 'X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <doi:10.48550/arXiv.1809.00366>) and can produce different factorizations such as the weighted 'implicit-feedback' model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the 'weighted-lambda-regularization' model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with 'implicit features' (Rendle, Zhang, Koren, (2019) <doi:10.48550/arXiv.1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data.
- Version3.5.1-3
- R versionunknown
- LicenseMIT
- LicenseLICENSE
- Needs compilation?Yes
- Last release12/09/2023
Documentation
Team
David Cortes
Jorge Nocedal
Show author detailsRolesCopyright holderNaoaki Okazaki
Show author detailsRolesCopyright holderDavid Blackman
Show author detailsRolesCopyright holderSebastiano Vigna
Show author detailsRolesCopyright holderNumPy Developers
Show author detailsRolesCopyright holder
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Suggests9 packages
- Reverse Suggests1 package