conTree

Contrast Trees and Boosting

CRAN Package

Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) . In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports1 package
  • Suggests3 packages