conformalbayes
Jackknife(+) Predictive Intervals for Bayesian Models
Provides functions to construct finite-sample calibrated predictive intervals for Bayesian models, following the approach in Barber et al. (2021) doi:10.1214/20-AOS1965. These intervals are calculated efficiently using importance sampling for the leave-one-out residuals. By default, the intervals will also reflect the relative uncertainty in the Bayesian model, using the locally-weighted conformal methods of Lei et al. (2018) doi:10.1080/01621459.2017.1307116.
- Version0.1.2
- R versionunknown
- LicenseMIT
- LicenseLICENSE
- Needs compilation?No
- Last release08/12/2022
Documentation
Team
Cory McCartan
MaintainerShow author details
Insights
Last 30 days
This package has been downloaded 238 times in the last 30 days. More than a random curiosity, but not quite a blockbuster. Still, it's gaining traction! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 7 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 3,240 times in the last 365 days. Now we’re talking! This work is officially 'heard of in academic circles', just like those wild research papers on synthetic bananas. The day with the most downloads was Sep 11, 2024 with 29 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports4 packages
- Suggests6 packages