CRAN/E | ebmc

ebmc

Ensemble-Based Methods for Class Imbalance Problem

Installation

About

Four ensemble-based methods (SMOTEBoost, RUSBoost, UnderBagging, and SMOTEBagging) for class imbalance problem are implemented for binary classification. Such methods adopt ensemble methods and data re-sampling techniques to improve model performance in presence of class imbalance problem. One special feature offers the possibility to choose multiple supervised learning algorithms to build weak learners within ensemble models. References: Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer (2003) doi:10.1007/978-3-540-39804-2_12, Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano (2010) doi:10.1109/TSMCA.2009.2029559, R. Barandela, J. S. Sanchez, R. M. Valdovinos (2003) doi:10.1007/s10044-003-0192-z, Shuo Wang and Xin Yao (2009) doi:10.1109/CIDM.2009.4938667, Yoav Freund and Robert E. Schapire (1997) doi:10.1006/jcss.1997.1504.

Key Metrics

Version 1.0.1
Published 2022-01-10 981 days ago
Needs compilation? no
License GPL (≥ 3)
CRAN checks ebmc results

Downloads

Yesterday 5 0%
Last 7 days 56 -10%
Last 30 days 199 -37%
Last 90 days 702 +32%
Last 365 days 2.377 -15%

Maintainer

Maintainer

"Hsiang Hao, Chen"

Authors

Hsiang Hao
Chen

Material

Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

ebmc archive

Depends

methods

Imports

e1071
rpart
C50
randomForest
pROC
smotefamily