envoutliers
Methods for Identification of Outliers in Environmental Data
Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) doi:10.1002/cem.2997) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) doi:10.1016/j.apr.2017.01.004) and the third method (Holesovsky, Campulova and Michalek (2018) doi:10.1016/j.apr.2017.06.005) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) doi:10.1016/j.apr.2017.06.005).
- Version1.1.0
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- envoutliers citation info
- Last release05/07/2020
Documentation
Team
Martina Campulova
Roman Campula
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports7 packages
- Suggests1 package