fDMA
Dynamic Model Averaging and Dynamic Model Selection for Continuous Outcomes
Allows to estimate dynamic model averaging, dynamic model selection and median probability model. The original methods are implemented, as well as, selected further modifications of these methods. In particular the user might choose between recursive moment estimation and exponentially moving average for variance updating. Inclusion probabilities might be modified in a way using 'Google Trends'. The code is written in a way which minimises the computational burden (which is quite an obstacle for dynamic model averaging if many variables are used). For example, this package allows for parallel computations and Occam's window approach. The package is designed in a way that is hoped to be especially useful in economics and finance. Main reference: Raftery, A.E., Karny, M., Ettler, P. (2010) doi:10.1198/TECH.2009.08104.
- Version2.2.8
- R versionunknown
- LicenseGPL-3
- Needs compilation?Yes
- fDMA citation info
- Last release01/24/2025
Documentation
Team
Krzysztof Drachal
MaintainerShow author details
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports12 packages
- Suggests1 package
- Linking To2 packages