fdaMocca

Model-Based Clustering for Functional Data with Covariates

CRAN Package

Routines for model-based functional cluster analysis for functional data with optional covariates. The idea is to cluster functional subjects (often called functional objects) into homogenous groups by using spline smoothers (for functional data) together with scalar covariates. The spline coefficients and the covariates are modelled as a multivariate Gaussian mixture model, where the number of mixtures corresponds to the number of clusters. The parameters of the model are estimated by maximizing the observed mixture likelihood via an EM algorithm (Arnqvist and Sjöstedt de Luna, 2019) doi:10.48550/arXiv.1904.10265. The clustering method is used to analyze annual lake sediment from lake Kassjön (Northern Sweden) which cover more than 6400 years and can be seen as historical records of weather and climate.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports5 packages