forecastML
Time Series Forecasting with Machine Learning Methods
The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" doi:10.1016/j.csda.2017.11.003.
- Version0.9.0
- R versionunknown
- LicenseMIT
- Needs compilation?No
- Last release05/07/2020
Documentation
Team
Nickalus Redell
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports10 packages
- Suggests8 packages