forecastML
Time Series Forecasting with Machine Learning Methods
The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" doi:10.1016/j.csda.2017.11.003.
- Version0.9.0
- R versionunknown
- LicenseMIT
- Needs compilation?No
- Last release05/07/2020
Documentation
Team
Nickalus Redell
Insights
Last 30 days
This package has been downloaded 373 times in the last 30 days. More than a random curiosity, but not quite a blockbuster. Still, it's gaining traction! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 6 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 4,876 times in the last 365 days. Now we’re talking! This work is officially 'heard of in academic circles', just like those wild research papers on synthetic bananas. The day with the most downloads was Sep 11, 2024 with 43 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports10 packages
- Suggests8 packages