gWQS
Generalized Weighted Quantile Sum Regression
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) doi:10.1007/s13253-014-0180-3), a random subset implementation of WQS (Curtin et al. (2019) doi:10.1080/03610918.2019.1577971), a repeated holdout validation WQS (Tanner et al. (2019) doi:10.1016/j.mex.2019.11.008) and a WQS with 2 indices (Renzetti et al. (2023) doi:10.3389/fpubh.2023.1289579) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
- Version3.0.5
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release11/16/2023
Documentation
Team
Stefano Renzetti
Paul Curtin
Show author detailsRolesAuthorAllan C Just
Show author detailsRolesContributorGhalib Bello
Show author detailsRolesContributorChris Gennings
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports17 packages
- Suggests1 package
- Reverse Imports3 packages