gbm.auto
Automated Boosted Regression Tree Modelling and Mapping Suite
Automates delta log-normal boosted regression tree abundance prediction. Loops through parameters provided (LR (learning rate), TC (tree complexity), BF (bag fraction)), chooses best, simplifies, & generates line, dot & bar plots, & outputs these & predictions & a report, makes predicted abundance maps, and Unrepresentativeness surfaces. Package core built around 'gbm' (gradient boosting machine) functions in 'dismo' (Hijmans, Phillips, Leathwick & Jane Elith, 2020 & ongoing), itself built around 'gbm' (Greenwell, Boehmke, Cunningham & Metcalfe, 2020 & ongoing, originally by Ridgeway). Indebted to Elith/Leathwick/Hastie 2008 'Working Guide' doi:10.1111/j.1365-2656.2008.01390.x; workflow follows Appendix S3. See https://www.simondedman.com/ for published guides and papers using this package.
- Version2024.10.01
- R version≥ 3.5.0
- LicenseMIT
- LicenseLICENSE
- Needs compilation?No
- Languageen-GB
- gbm.auto citation info
- Last release10/01/2024
Documentation
Team
Simon Dedman
Insights
Last 30 days
This package has been downloaded 255 times in the last 30 days. More than a random curiosity, but not quite a blockbuster. Still, it's gaining traction! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 11 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 3,741 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Oct 02, 2024 with 75 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports17 packages