gbm.auto
Automated Boosted Regression Tree Modelling and Mapping Suite
Automates delta log-normal boosted regression tree abundance prediction. Loops through parameters provided (LR (learning rate), TC (tree complexity), BF (bag fraction)), chooses best, simplifies, & generates line, dot & bar plots, & outputs these & predictions & a report, makes predicted abundance maps, and Unrepresentativeness surfaces. Package core built around 'gbm' (gradient boosting machine) functions in 'dismo' (Hijmans, Phillips, Leathwick & Jane Elith, 2020 & ongoing), itself built around 'gbm' (Greenwell, Boehmke, Cunningham & Metcalfe, 2020 & ongoing, originally by Ridgeway). Indebted to Elith/Leathwick/Hastie 2008 'Working Guide' doi:10.1111/j.1365-2656.2008.01390.x; workflow follows Appendix S3. See https://www.simondedman.com/ for published guides and papers using this package.
- Version2024.10.01
- R version≥ 3.5.0
- LicenseMIT
- LicenseLICENSE
- Needs compilation?No
- Languageen-GB
- gbm.auto citation info
- Last release10/01/2024
Documentation
Team
Simon Dedman
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN