gcdnet
The (Adaptive) LASSO and Elastic Net Penalized Least Squares, Logistic Regression, Hybrid Huberized Support Vector Machines, Squared Hinge Loss Support Vector Machines and Expectile Regression using a Fast Generalized Coordinate Descent Algorithm
Implements a generalized coordinate descent (GCD) algorithm for computing the solution paths of the hybrid Huberized support vector machine (HHSVM) and its generalizations. Supported models include the (adaptive) LASSO and elastic net penalized least squares, logistic regression, HHSVM, squared hinge loss SVM and expectile regression.
- Version1.0.6
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- Last release08/14/2022
Documentation
Team
Yi Yang
Yi Yang, Yuwen Gu, Hui Zou
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports4 packages
- Suggests1 package
- Reverse Imports2 packages