gllvm
Generalized Linear Latent Variable Models
Analysis of multivariate data using generalized linear latent variable models (gllvm). Estimation is performed using either Laplace approximation method or variational approximation method implemented via TMB (Kristensen et al., (2016),
- Version1.4.3
- R version≥ 3.5.0
- LicenseGPL-2
- Needs compilation?Yes
- gllvm citation info
- Last release09/18/2023
Documentation
- VignetteAnalysing multivariate abundance data using gllvm
- VignetteAnalysing high-dimensional microbial community data using gllvm
- VignetteIntroduction to gllvm Part 1: Ordination
- VignetteIntroduction to gllvm Part 2: Species correlations
- VignetteHow to use the quadratic response model
- VignetteOrdination with predictors
- MaterialREADME
- MaterialNEWS
- In ViewsEnvironmetrics
Team
Jenni Niku
Wesley Brooks
Show author detailsRolesAuthorRiki Herliansyah
Show author detailsRolesAuthorFrancis K.C. Hui
Show author detailsRolesAuthorPekka Korhonen
Show author detailsRolesAuthorSara Taskinen
Show author detailsRolesAuthorBert van der Veen
Show author detailsRolesAuthorDavid I. Warton
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends3 packages
- Imports8 packages
- Suggests6 packages
- Linking To2 packages
- Reverse Suggests1 package