glmmTMB
Generalized Linear Mixed Models using Template Model Builder
Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.
- Version1.1.10
- R versionunknown
- LicenseAGPL-3
- Needs compilation?Yes
- glmmTMB citation info
- Last release09/26/2024
Documentation
- VignetteCovariance structures with glmmTMB
- VignetteHacking glmmTMB
- VignettePost-hoc MCMC with glmmTMB
- VignetteMiscellaneous examples
- VignetteParallel optimization using glmmTMB
- VignettePriors in glmmTMB
- VignetteSimulate from a fitted glmmTMB model or a formula
- VignetteTroubleshooting with glmmTMB
- Vignettebasic examples of glmmTMB usage
- VignetteModel evaluation
- MaterialNEWS
- In ViewsEnvironmetrics
- In ViewsMixedModels
Team
Mollie Brooks
Martin Maechler
Charles J. Geyer
Show author detailsRolesContributorArni Magnusson
Show author detailsRolesAuthorBen Bolker
Kasper Kristensen
Show author detailsRolesAuthorDaniel Lüdecke
Mikael Jagan
Show author detailsRolesContributorDaniel B. Stouffer
Show author detailsRolesContributorHans Skaug
Show author detailsRolesAuthorCasper Berg
Show author detailsRolesAuthorAnders Nielsen
Show author detailsRolesAuthorJoseph O'Brien
Maeve McGillycuddy
Show author detailsRolesContributorKoen van Bentham
Show author detailsRolesAuthorNafis Sadat
Russ Lenth
Show author detailsRolesContributorBrenton Wiernik
Michael Agronah
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports7 packages
- Suggests33 packages
- Linking To2 packages
- Reverse Depends2 packages
- Reverse Imports11 packages
- Reverse Suggests29 packages
- Reverse Enhances2 packages