hbamr
Hierarchical Bayesian Aldrich-McKelvey Scaling via 'Stan'
Perform hierarchical Bayesian Aldrich-McKelvey scaling using Hamiltonian Monte Carlo via 'Stan'. Aldrich-McKelvey ('AM') scaling is a method for estimating the ideological positions of survey respondents and political actors on a common scale using positional survey data. The hierarchical versions of the Bayesian 'AM' model included in this package outperform other versions both in terms of yielding meaningful posterior distributions for respondent positions and in terms of recovering true respondent positions in simulations. The package contains functions for preparing data, fitting models, extracting estimates, plotting key results, and comparing models using cross-validation. The original version of the default model is described in Bølstad (2024) doi:10.1017/pan.2023.18.
- Version2.4.0
- R versionR (≥ 3.4.0)
- LicenseGPL (≥ 3)
- Needs compilation?Yes
- hbamr citation info
- Last release01/26/2025
Documentation
Team
Jørgen Bølstad
MaintainerShow author details
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports16 packages
- Suggests3 packages
- Linking To6 packages