hmclearn
Fit Statistical Models Using Hamiltonian Monte Carlo
Provide users with a framework to learn the intricacies of the Hamiltonian Monte Carlo algorithm with hands-on experience by tuning and fitting their own models. All of the code is written in R. Theoretical references are listed below:. Neal, Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN: 978-1420079418, Betancourt, Michael (2017) "A Conceptual Introduction to Hamiltonian Monte Carlo" doi:10.48550/arXiv.1701.02434, Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in R" doi:10.48550/arXiv.2006.16194, Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015) "Foundations of Linear and Generalized Linear Models ISBN: 978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects Models in S and S-Plus" ISBN: 978-1441903174.
- Version0.0.5
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- Languageen-US
- Last release10/05/2020
Documentation
Team
Samuel Thomas
Wanzhu Tu
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests10 packages