CRAN/E | hmclearn

hmclearn

Fit Statistical Models Using Hamiltonian Monte Carlo

Installation

About

Provide users with a framework to learn the intricacies of the Hamiltonian Monte Carlo algorithm with hands-on experience by tuning and fitting their own models. All of the code is written in R. Theoretical references are listed below:. Neal, Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN: 978-1420079418, Betancourt, Michael (2017) "A Conceptual Introduction to Hamiltonian Monte Carlo" , Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in R" , Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015) "Foundations of Linear and Generalized Linear Models ISBN: 978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects Models in S and S-Plus" ISBN: 978-1441903174.

Key Metrics

Version 0.0.5
R ≥ 3.6
Published 2020-10-05 1436 days ago
Needs compilation? no
License GPL-3
CRAN checks hmclearn results
Language en-US

Downloads

Yesterday 14 0%
Last 7 days 50 +43%
Last 30 days 176 -2%
Last 90 days 537 -5%
Last 365 days 2.434 -4%

Maintainer

Maintainer

Samuel Thomas

Authors

Samuel Thomas

cre / aut

Wanzhu Tu

ctb

Material

README
NEWS
Reference manual
Package source

Vignettes

linear_mixed_effects_hmclearn
linear_regression_hmclearn
logistic_mixed_effects_hmclearn
logistic_regression_hmclearn
poisson_regression_hmclearn

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

hmclearn archive

Depends

R ≥ 3.6

Imports

bayesplot
parallel
MASS
mvtnorm

Suggests

knitr
rmarkdown
Matrix
lme4
carData
mlbench
ggplot2
mlmRev
testthat
MCMCpack