CRAN/E | lamle

lamle

Maximum Likelihood Estimation of Latent Variable Models

Installation

About

Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) doi:10.1080/10705511.2017.1403287, for item response theory models in Andersson, B., and Xin, T. (2021) doi:10.3102/1076998620945199, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) doi:10.1016/j.csda.2023.107710. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.

Key Metrics

Version 0.3.1
Published 2023-08-25 381 days ago
Needs compilation? yes
License GPL-2
License GPL-3
CRAN checks lamle results

Downloads

Yesterday 1 0%
Last 7 days 24 -17%
Last 30 days 132 -18%
Last 90 days 432 -9%
Last 365 days 1.909 +1293%

Maintainer

Maintainer

Björn Andersson

Authors

Björn Andersson

aut / cre

Shaobo Jin

aut

Maoxin Zhang

ctb

Material

NEWS
Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-develnot available

x86_64

r-releasenot available

x86_64

r-oldrelnot available

x86_64

Imports

Rcpp ≥ 1.0.1
mvtnorm
numDeriv
stats
fastGHQuad
methods

LinkingTo

Rcpp
RcppArmadillo