CRAN/E | locStra

locStra

Fast Implementation of (Local) Population Stratification Methods

Installation

About

Fast implementations to compute the genetic covariance matrix, the Jaccard similarity matrix, the s-matrix (the weighted Jaccard similarity matrix), and the (classic or robust) genomic relationship matrix of a (dense or sparse) input matrix (see Hahn, Lutz, Hecker, Prokopenko, Cho, Silverman, Weiss, and Lange (2020) doi:10.1002/gepi.22356). Full support for sparse matrices from the R-package 'Matrix'. Additionally, an implementation of the power method (von Mises iteration) to compute the largest eigenvector of a matrix is included, a function to perform an automated full run of global and local correlations in population stratification data, a function to compute sliding windows, and a function to invert minor alleles and to select those variants/loci exceeding a minimal cutoff value. New functionality in locStra allows one to extract the k leading eigenvectors of the genetic covariance matrix, Jaccard similarity matrix, s-matrix, and genomic relationship matrix via fast PCA without actually computing the similarity matrices. The fast PCA to compute the k leading eigenvectors can now also be run directly from 'bed'+'bim'+'fam' files.

Key Metrics

Version 1.9
Published 2022-04-12 881 days ago
Needs compilation? yes
License GPL-2
License GPL-3
CRAN checks locStra results

Downloads

Yesterday 7
Last 7 days 58 +16%
Last 30 days 285 -4%
Last 90 days 847 -3%
Last 365 days 4.866 +40%

Maintainer

Maintainer

Georg Hahn

Authors

Georg Hahn

aut / cre

Sharon M. Lutz

ctb

Christoph Lange

ctb

Material

Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

locStra archive

Imports

Rcpp ≥ 0.12.13
Rdpack
Matrix
RSpectra
bigsnpr

LinkingTo

Rcpp
RcppEigen