Installation
About
Fast implementations to compute the genetic covariance matrix, the Jaccard similarity matrix, the s-matrix (the weighted Jaccard similarity matrix), and the (classic or robust) genomic relationship matrix of a (dense or sparse) input matrix (see Hahn, Lutz, Hecker, Prokopenko, Cho, Silverman, Weiss, and Lange (2020) doi:10.1002/gepi.22356). Full support for sparse matrices from the R-package 'Matrix'. Additionally, an implementation of the power method (von Mises iteration) to compute the largest eigenvector of a matrix is included, a function to perform an automated full run of global and local correlations in population stratification data, a function to compute sliding windows, and a function to invert minor alleles and to select those variants/loci exceeding a minimal cutoff value. New functionality in locStra allows one to extract the k leading eigenvectors of the genetic covariance matrix, Jaccard similarity matrix, s-matrix, and genomic relationship matrix via fast PCA without actually computing the similarity matrices. The fast PCA to compute the k leading eigenvectors can now also be run directly from 'bed'+'bim'+'fam' files.
Key Metrics
Downloads
Yesterday | 7 |
Last 7 days | 58 +16% |
Last 30 days | 285 -4% |
Last 90 days | 847 -3% |
Last 365 days | 4.866 +40% |
Maintainer
Maintainer | Georg Hahn |