CRAN/E | mase

mase

Model-Assisted Survey Estimators

Installation

About

A set of model-assisted survey estimators and corresponding variance estimators for single stage, unequal probability, without replacement sampling designs. All of the estimators can be written as a generalized regression estimator with the Horvitz-Thompson, ratio, post-stratified, and regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6). Two of the estimators employ a statistical learning model as the assisting model: the elastic net regression estimator, which is an extension of the lasso regression estimator given by McConville et al. (2017) doi:10.1093/jssam/smw041, and the regression tree estimator described in McConville and Toth (2017) . The variance estimators which approximate the joint inclusion probabilities can be found in Berger and Tille (2009) doi:10.1016/S0169-7161(08)00002-3 and the bootstrap variance estimator is presented in Mashreghi et al. (2016) doi:10.1214/16-SS113.

Citation mase citation info

Key Metrics

Version 0.1.5.2
R ≥ 4.1.0
Published 2024-01-17 244 days ago
Needs compilation? yes
License GPL-2
CRAN checks mase results

Downloads

Yesterday 2
Last 7 days 74 -23%
Last 30 days 287 -3%
Last 90 days 850 -13%
Last 365 days 4.146 +1%

Maintainer

Maintainer

Kelly McConville

Authors

Kelly McConville

cre / aut / cph

Josh Yamamoto

aut

Becky Tang

aut

George Zhu

aut

Sida Li

ctb

Shirley Chueng

ctb

Daniell Toth

ctb

Material

README
Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

mase archive

Depends

R ≥ 4.1.0

Imports

glmnet
survey
dplyr
tidyr
rpms
boot
stats
Rdpack
ellipsis
Rcpp

Suggests

roxygen2
testthat ≥ 3.0.0
knitr
rmarkdown

LinkingTo

Rcpp
RcppEigen

Reverse Imports

FIESTAutils