mdpeer
Graph-Constrained Regression with Enhanced Regularization Parameters Selection
Provides graph-constrained regression methods in which regularization parameters are selected automatically via estimation of equivalent Linear Mixed Model formulation. 'riPEER' (ridgified Partially Empirical Eigenvectors for Regression) method employs a penalty term being a linear combination of graph-originated and ridge-originated penalty terms, whose two regularization parameters are ML estimators from corresponding Linear Mixed Model solution; a graph-originated penalty term allows imposing similarity between coefficients based on graph information given whereas additional ridge-originated penalty term facilitates parameters estimation: it reduces computational issues arising from singularity in a graph-originated penalty matrix and yields plausible results in situations when graph information is not informative. 'riPEERc' (ridgified Partially Empirical Eigenvectors for Regression with constant) method utilizes addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix. 'vrPEER' (variable reducted PEER) method performs variable-reduction procedure to handle the non-invertibility of a graph Laplacian matrix.
- Version1.0.1
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- Last release05/30/2017
Documentation
Team
Marta Karas
Jaroslaw Harezlak
Show author detailsRolesContributorDamian Brzyski
Show author detailsRolesContributor
Insights
Last 30 days
This package has been downloaded 150 times in the last 30 days. Enough downloads to make a small wave in the niche community. The curiosity is spreading! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 9 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 1,833 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Sep 11, 2024 with 26 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports9 packages
- Suggests2 packages