metaggR
Calculate the Knowledge-Weighted Estimate
According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judges’ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286 proposes a procedure for calculating a weighted average of the judges’ individual estimates such that resulting aggregate estimate appropriately combines the judges' collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate – know as "the knowledge-weighted estimate" – inputs a) judges' estimates of a continuous outcome (E) and b) predictions of others' average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.
- Version0.3.0
- R version≥ 4.1
- LicenseGPL-2
- Needs compilation?No
- metaggR citation info
- Last release04/25/2022
Documentation
Team
Ville Satopää
Asa Palley
Show author detailsRolesAuthor
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports1 package
- Suggests3 packages