metasens
Statistical Methods for Sensitivity Analysis in Meta-Analysis
The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) doi:10.1007/978-3-319-21416-0, Chapter 5 'Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) doi:10.1177/096228020101000402; - limit meta-analysis by Rücker et al. (2011) doi:10.1093/biostatistics/kxq046; - upper bound for outcome reporting bias by Copas & Jackson (2004) doi:10.1111/j.0006-341X.2004.00161.x; - imputation methods for missing binary data by Gamble & Hollis (2005) doi:10.1016/j.jclinepi.2004.09.013 and Higgins et al. (2008) doi:10.1177/1740774508091600; - LFK index test and Doi plot by Furuya-Kanamori et al. (2018) doi:10.1097/XEB.0000000000000141.
- Version1.5-2
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release02/28/2023
Documentation
Team
Guido Schwarzer
Gerta Rücker
James R. Carpenter
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package