miceadds
Some Additional Multiple Imputation Functions, Especially for 'mice'
Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, doi:10.18637/jss.v045.i03) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, doi:10.1007/BF02294457), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, doi:10.1177/1094428117703686; van Buuren, 2018, Ch.7, doi:10.1201/9780429492259), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, doi:10.1111/1467-9574.00217), substantive model compatible imputation (Bartlett et al., 2015, doi:10.1177/0962280214521348), and features for the generation of synthetic datasets (Reiter, 2005, doi:10.1111/j.1467-985X.2004.00343.x; Nowok, Raab, & Dibben, 2016, doi:10.18637/jss.v074.i11).
- Version3.17-44
- R version≥ 3.5-0
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- miceadds citation info
- Last release01/09/2024
Documentation
Team
Alexander Robitzsch
MaintainerShow author detailsSimon Grund
Show author detailsRolesAuthorThorsten Henke
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports2 packages
- Enhances7 packages
- Suggests21 packages
- Linking To2 packages
- Reverse Imports5 packages
- Reverse Suggests8 packages
- Reverse Enhances1 package