CRAN/E | mikropml

mikropml

User-Friendly R Package for Supervised Machine Learning Pipelines

Installation

About

An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) doi:10.1128/mBio.00434-20 with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website for more information, documentation, and examples.

Citation mikropml citation info
www.schlosslab.org/mikropml/
github.com/SchlossLab/mikropml
Bug report File report

Key Metrics

Version 1.6.1
R ≥ 4.1.0
Published 2023-08-21 390 days ago
Needs compilation? no
License MIT
License File
CRAN checks mikropml results

Downloads

Yesterday 10 0%
Last 7 days 116 +32%
Last 30 days 488 -22%
Last 90 days 1.421 +11%
Last 365 days 5.355 +8%

Maintainer

Maintainer

Kelly Sovacool

Authors

Begüm Topçuoğlu

aut

Zena Lapp

aut

Kelly Sovacool

aut / cre

Evan Snitkin

aut

Jenna Wiens

aut

Patrick Schloss

aut

Nick Lesniak

ctb

Courtney Armour

ctb

Sarah Lucas

ctb

Material

README
NEWS
Reference manual
Package source

Vignettes

Introduction to mikropml
mikropml paper

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

mikropml archive

Depends

R ≥ 4.1.0

Imports

caret
dplyr
e1071
glmnet
kernlab
MLmetrics
randomForest
rlang
rpart
stats
utils
xgboost

Suggests

assertthat
doFuture
forcats
foreach
future
future.apply
furrr
ggplot2
knitr
progress
progressr
purrr
rmarkdown
rsample
testthat
tidyr