mirtjml

Joint Maximum Likelihood Estimation for High-Dimensional Item Factor Analysis

CRAN Package

Provides constrained joint maximum likelihood estimation algorithms for item factor analysis (IFA) based on multidimensional item response theory models. So far, we provide functions for exploratory and confirmatory IFA based on the multidimensional two parameter logistic (M2PL) model for binary response data. Comparing with traditional estimation methods for IFA, the methods implemented in this package scale better to data with large numbers of respondents, items, and latent factors. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: 1. Chen, Y., Li, X., & Zhang, S. (2018). Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis. Psychometrika, 1-23. doi:10.1007/s11336-018-9646-5; 2. Chen, Y., Li, X., & Zhang, S. (2019). Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications. Journal of the American Statistical Association, doi:10.1080/01621459.2019.1635485.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports2 packages
  • Linking To2 packages
  • Reverse Imports1 package