CRAN/E | mirtjml

mirtjml

Joint Maximum Likelihood Estimation for High-Dimensional Item Factor Analysis

Installation

About

Provides constrained joint maximum likelihood estimation algorithms for item factor analysis (IFA) based on multidimensional item response theory models. So far, we provide functions for exploratory and confirmatory IFA based on the multidimensional two parameter logistic (M2PL) model for binary response data. Comparing with traditional estimation methods for IFA, the methods implemented in this package scale better to data with large numbers of respondents, items, and latent factors. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: 1. Chen, Y., Li, X., & Zhang, S. (2018). Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis. Psychometrika, 1-23. doi:10.1007/s11336-018-9646-5; 2. Chen, Y., Li, X., & Zhang, S. (2019). Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications. Journal of the American Statistical Association, doi:10.1080/01621459.2019.1635485.

github.com/slzhang-fd/mirtjml
Bug report File report

Key Metrics

Version 1.4.0
R ≥ 3.1
Published 2020-06-08 1562 days ago
Needs compilation? yes
License GPL-3
CRAN checks mirtjml results

Downloads

Yesterday 0 -100%
Last 7 days 54 -2%
Last 30 days 188 +16%
Last 90 days 494 +2%
Last 365 days 2.090 -1%

Maintainer

Maintainer

Siliang Zhang

Authors

Siliang Zhang

aut / cre

Yunxiao Chen

aut

Xiaoou Li

aut

Material

README
NEWS
Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

mirtjml archive

Depends

R ≥ 3.1

Imports

Rcpp ≥ 0.12.17
stats
GPArotation

LinkingTo

Rcpp
RcppArmadillo

Reverse Imports

mirtsvd