CRAN/E | mlsbm

mlsbm

Efficient Estimation of Bayesian SBMs & MLSBMs

Installation

About

Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in 'Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).

Key Metrics

Version 0.99.2
R ≥ 2.10
Published 2021-02-07 1318 days ago
Needs compilation? yes
License GPL-2
License GPL-3
CRAN checks mlsbm results

Downloads

Yesterday 0
Last 7 days 41 +17%
Last 30 days 175 +3%
Last 90 days 483 -3%
Last 365 days 2.093 +9%

Maintainer

Maintainer

Carter Allen

Authors

Carter Allen

aut / cre

Dongjun Chung

aut

Material

README
Reference manual
Package source

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Depends

R ≥ 2.10

Imports

Rcpp

LinkingTo

Rcpp
RcppArmadillo