moocore
Core Mathematical Functions for Multi-Objective Optimization
Fast implementation of mathematical operations and performance metrics for multi-objective optimization, including filtering and ranking of dominated vectors according to Pareto optimality, computation of the empirical attainment function, V.G. da Fonseca, C.M. Fonseca, A.O. Hall (2001) doi:10.1007/3-540-44719-9_15, hypervolume metric, C.M. Fonseca, L. Paquete, M. López-Ibáñez (2006) doi:10.1109/CEC.2006.1688440, epsilon indicator, inverted generational distance, and Vorob'ev threshold, expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) doi:10.1016/j.ejor.2014.07.032, among others.
- Version0.1.2
- R versionunknown
- LicenseLGPL-2
- LicenseLGPL-2.1
- LicenseLGPL-3
- Needs compilation?Yes
- Languageen-GB
- Last release09/18/2024
Documentation
Team
Manuel López-Ibáñez
MaintainerShow author detailsMakoto Matsumoto
Show author detailsRolesCopyright holderTakuji Nishimura
Show author detailsRolesCopyright holderNumPy Developers
Show author detailsRolesCopyright holderCarlos Fonseca
Show author detailsRolesContributorLuís Paquete
Show author detailsRolesContributorMickaël Binois
Show author detailsRolesContributorMichael H. Buselli
Show author detailsRolesCopyright holderWessel Dankers
Show author detailsRolesCopyright holderAndreia P. Guerreiro
Show author detailsRolesContributorJean-Sebastien Roy
Show author detailsRolesCopyright holder
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages
- Suggests5 packages
- Reverse Imports1 package