mvnimpute

Simultaneously Impute the Missing and Censored Values

CRAN Package

Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987). The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports7 packages
  • Suggests2 packages
  • Linking To3 packages