CRAN/E | naivebayes

naivebayes

High Performance Implementation of the Naive Bayes Algorithm

Installation

About

In this implementation of the Naive Bayes classifier following class conditional distributions are available: 'Bernoulli', 'Categorical', 'Gaussian', 'Poisson', 'Multinomial' and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.

Citation naivebayes citation info
github.com/majkamichal/naivebayes
majkamichal.github.io/naivebayes/
Bug report File report

Key Metrics

Version 1.0.0
Published 2024-03-16 202 days ago
Needs compilation? no
License GPL-2
CRAN checks naivebayes results

Downloads

Yesterday 126 -30%
Last 7 days 950 -34%
Last 30 days 4.549 +32%
Last 90 days 11.264 -38%
Last 365 days 67.285 +25%

Maintainer

Maintainer

Michal Majka

Authors

Michal Majka

aut / cre

Material

NEWS
Reference manual
Package source

In Views

MachineLearning
MissingData

Vignettes

An Introduction to Naivebayes

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

naivebayes archive

Suggests

knitr
Matrix

Reverse Imports

MLFS
ModTools
nproc
PrInCE
promor

Reverse Suggests

discrim
FRESA.CAD
quanteda.textmodels
superml