nsdr

Nonlinear Sufficient Dimension Reduction

CRAN Package

Provides tools to implement both unsupervised and supervised nonlinear dimension reduction methods. Principal Component Analysis (PCA), Sliced Inverse Regression (SIR), and Sliced Average Variance Estimation (SAVE) are useful methods to reduce the dimensionality of covariates. However, they produce linear combinations of covariates. Kernel PCA, generalized SIR, and generalized SAVE address this problem by extending the applicability of the dimension reduction problem to nonlinear settings. This package includes a comprehensive algorithm for kernel PCA, generalized SIR, and generalized SAVE, including methods for choosing tuning parameters and some essential functions.


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Suggests1 package