nsp

Inference for Multiple Change-Points in Linear Models

CRAN Package

Implementation of Narrowest Significance Pursuit, a general and flexible methodology for automatically detecting localised regions in data sequences which each must contain a change-point (understood as an abrupt change in the parameters of an underlying linear model), at a prescribed global significance level. Narrowest Significance Pursuit works with a wide range of distributional assumptions on the errors, and yields exact desired finite-sample coverage probabilities, regardless of the form or number of the covariates. For details, see P. Fryzlewicz (2021) https://stats.lse.ac.uk/fryzlewicz/nsp/nsp.pdf.


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports1 package