nsprcomp
Non-Negative and Sparse PCA
Two methods for performing a constrained principal component analysis (PCA), where non-negativity and/or sparsity constraints are enforced on the principal axes (PAs). The function 'nsprcomp' computes one principal component (PC) after the other. Each PA is optimized such that the corresponding PC has maximum additional variance not explained by the previous components. In contrast, the function 'nscumcomp' jointly computes all PCs such that the cumulative variance is maximal. Both functions have the same interface as the 'prcomp' function from the 'stats' package (plus some extra parameters), and both return the result of the analysis as an object of class 'nsprcomp', which inherits from 'prcomp'. See
- Version0.5.1-2
- R version≥ 3.4.0
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- nsprcomp citation info
- Last release06/05/2018
Documentation
Team
Christian Sigg
R Core team
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports1 package
- Suggests3 packages
- Reverse Imports1 package