orthoDr
Semi-Parametric Dimension Reduction Models Using Orthogonality Constrained Optimization
Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) doi:10.1007/s10107-012-0584-1 to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) doi:10.1080/01621459.2011.646925, Ma & Zhu (2013) doi:10.1214/12-AOS1072, Sun, Zhu, Wang & Zeng (2019) doi:10.1093/biomet/asy064 and Zhou, Zhu & Zeng (2021) doi:10.1093/biomet/asaa087. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) doi:10.1198/jasa.2009.tm09372 and partial SAVE by Feng, Wen & Zhu (2013) doi:10.1080/01621459.2012.746065. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through 'OpenMP'.
- Version0.6.8
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- orthoDr citation info
- Last release03/13/2024
Documentation
Team
Ruoqing Zhu
James Joseph Balamuta
Show author detailsRolesContributorRuilin Zhao
Show author detailsRolesAuthor, Copyright holderJiyang Zhang
Show author detailsRolesAuthor, Copyright holderWenzhuo Zhou
Show author detailsRolesAuthor, Copyright holderPeng Xu
Show author detailsRolesAuthor, Copyright holder
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports7 packages
- Linking To2 packages
- Reverse Imports1 package