orthoDr

Semi-Parametric Dimension Reduction Models Using Orthogonality Constrained Optimization

CRAN Package

Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) doi:10.1007/s10107-012-0584-1 to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) doi:10.1080/01621459.2011.646925, Ma & Zhu (2013) doi:10.1214/12-AOS1072, Sun, Zhu, Wang & Zeng (2019) doi:10.1093/biomet/asy064 and Zhou, Zhu & Zeng (2021) doi:10.1093/biomet/asaa087. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) doi:10.1198/jasa.2009.tm09372 and partial SAVE by Feng, Wen & Zhu (2013) doi:10.1080/01621459.2012.746065. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through 'OpenMP'.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports7 packages
  • Linking To2 packages
  • Reverse Imports1 package