pcalg
Methods for Graphical Models and Causal Inference
Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
- Version2.7-12
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- pcalg citation info
- Last release09/12/2024
Documentation
Team
Markus Kalisch
Martin Maechler
Alain Hauser
Show author detailsRolesAuthorJonas Peters
Show author detailsRolesContributorAntti Hyttinen
Diego Colombo
Show author detailsRolesContributorDoris Entner
Show author detailsRolesContributorPatrik Hoyer
Show author detailsRolesContributorNicoletta Andri
Show author detailsRolesContributorEmilija Perkovic
Show author detailsRolesContributorPreetam Nandy
Show author detailsRolesContributorPhilipp Ruetimann
Show author detailsRolesContributorDaniel Stekhoven
Show author detailsRolesContributorManuel Schuerch
Show author detailsRolesContributorMarco Eigenmann
Show author detailsRolesContributorLeonard Henckel
Show author detailsRolesContributorJoris Mooij
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports11 packages
- Suggests6 packages
- Linking To3 packages
- Reverse Depends3 packages
- Reverse Imports10 packages
- Reverse Suggests5 packages