quartets
Datasets to Help Teach Statistics
In the spirit of Anscombe's quartet, this package includes datasets that demonstrate the importance of visualizing your data, the importance of not relying on statistical summary measures alone, and why additional assumptions about the data generating mechanism are needed when estimating causal effects. The package includes "Anscombe's Quartet" (doi:10.1080/00031305.1973.10478966), D'Agostino McGowan & Barrett (2023) "Causal Quartet" (doi:10.48550/arXiv.2304.02683), "Datasaurus Dozen" (Matejka & Fitzmaurice 2017), "Interaction Triptych" (Rohrer & Arslan 2021) (doi:10.1177/25152459211007368), "Rashomon Quartet" (Biecek et al. 2023) (doi:10.48550/arXiv.2302.13356), and Gelman "Variation and Heterogeneity Causal Quartets" (Gelman et al. 2023) (doi:10.48550/arXiv.2302.12878).
- Version0.1.1
- R versionunknown
- LicenseMIT
- LicenseLICENSE
- Needs compilation?No
- quartets citation info
- Last release04/13/2023
Documentation
Team
Lucy D'Agostino McGowan
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN