Installation
About
A suite of tools useful to read, visualize and export bivariate motion energy time-series. Lagged synchrony between subjects can be analyzed through windowed cross-correlation. Surrogate data generation allows an estimation of pseudosynchrony that helps to estimate the effect size of the observed synchronization. Kleinbub, J. R., & Ramseyer, F. T. (2020). rMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. Psychotherapy research, 1-14. doi:10.1080/10503307.2020.1844334.
Citation | rMEA citation info |
github.com/kleinbub/rMEA https://psync.ch | |
github.com/kleinbub/rMEA https://psync.ch | |
Bug report | File report |
Key Metrics
Downloads
Yesterday | 5 0% |
Last 7 days | 173 -26% |
Last 30 days | 697 -44% |
Last 90 days | 2.390 +9% |
Last 365 days | 8.499 +36% |
Maintainer
Maintainer | Johann R. Kleinbub |
Depends
R | ≥ 4.0.0 |
Imports
grDevices | |
graphics | |
methods | |
stats | |
utils |