rmBayes

Performing Bayesian Inference for Repeated-Measures Designs

CRAN Package

A Bayesian credible interval is interpreted with respect to posterior probability, and this interpretation is far more intuitive than that of a frequentist confidence interval. However, standard highest-density intervals can be wide due to between-subjects variability and tends to hide within-subject effects, rendering its relationship with the Bayes factor less clear in within-subject (repeated-measures) designs. This urgent issue can be addressed by using within-subject intervals in within-subject designs, which integrate four methods including the Wei-Nathoo-Masson (2023) , the Loftus-Masson (1994) , the Nathoo-Kilshaw-Masson (2018) , and the Heck (2019) interval estimates.

  • Version0.1.16
  • R version≥ 3.5.0
  • LicenseGPL (≥ 3)
  • Needs compilation?Yes
  • Last release02/19/2024

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports5 packages
  • Suggests4 packages
  • Linking To6 packages