rminer
Data Mining Classification and Regression Methods
Facilitates the use of data mining algorithms in classification and regression (including time series forecasting) tasks by presenting a short and coherent set of functions. Versions: 1.4.8 improved help, several warning and error code fixes (more stable version, all examples run correctly); 1.4.7 improved Importance function and examples, minor error fixes; 1.4.6 / 1.4.5 / 1.4.4 new automated machine learning (AutoML) and ensembles, via improved fit(), mining() and mparheuristic() functions, and new categorical preprocessing, via improved delevels() function; 1.4.3 new metrics (e.g., macro precision, explained variance), new "lssvm" model and improved mparheuristic() function; 1.4.2 new "NMAE" metric, "xgboost" and "cv.glmnet" models (16 classification and 18 regression models); 1.4.1 new tutorial and more robust version; 1.4 - new classification and regression models, with a total of 14 classification and 15 regression methods, including: Decision Trees, Neural Networks, Support Vector Machines, Random Forests, Bagging and Boosting; 1.3 and 1.3.1 - new classification and regression metrics; 1.2 - new input importance methods via improved Importance() function; 1.0 - first version.
- Version1.4.8
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- Last release10/29/2024
Documentation
Team
Paulo Cortez
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports16 packages