robCompositions

Compositional Data Analysis

CRAN Package

Methods for analysis of compositional data including robust methods (doi:10.1007/978-3-319-96422-5), imputation of missing values (doi:10.1016/j.csda.2009.11.023), methods to replace rounded zeros (doi:10.1080/02664763.2017.1410524, doi:10.1016/j.chemolab.2016.04.011, doi:10.1016/j.csda.2012.02.012), count zeros (doi:10.1177/1471082X14535524), methods to deal with essential zeros (doi:10.1080/02664763.2016.1182135), (robust) outlier detection for compositional data, (robust) principal component analysis for compositional data, (robust) factor analysis for compositional data, (robust) discriminant analysis for compositional data (Fisher rule), robust regression with compositional predictors, functional data analysis (doi:10.1016/j.csda.2015.07.007) and p-splines (doi:10.1016/j.csda.2015.07.007), contingency (doi:10.1080/03610926.2013.824980) and compositional tables (doi:10.1111/sjos.12326, doi:10.1111/sjos.12223, doi:10.1080/02664763.2013.856871) and (robust) Anderson-Darling normality tests for compositional data as well as popular log-ratio transformations (addLR, cenLR, isomLR, and their inverse transformations). In addition, visualisation and diagnostic tools are implemented as well as high and low-level plot functions for the ternary diagram.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends3 packages
  • Imports20 packages
  • Suggests2 packages
  • Linking To2 packages
  • Reverse Imports2 packages
  • Reverse Suggests1 package