roben

Robust Bayesian Variable Selection for Gene-Environment Interactions

CRAN Package

Gene-environment (G×E) interactions have important implications to elucidate the etiology of complex diseases beyond the main genetic and environmental effects. Outliers and data contamination in disease phenotypes of G×E studies have been commonly encountered, leading to the development of a broad spectrum of robust penalization methods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in existing studies. We develop a robust Bayesian variable selection method for G×E interaction studies. The proposed Bayesian method can effectively accommodate heavy-tailed errors and outliers in the response variable while conducting variable selection by accounting for structural sparsity. In particular, the spike-and-slab priors have been imposed on both individual and group levels to identify important main and interaction effects. An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.

  • Version0.1.1
  • R version≥ 4.0.0
  • LicenseGPL-2
  • Needs compilation?Yes
  • Last release03/12/2024

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports3 packages
  • Suggests2 packages
  • Linking To2 packages