saemix
Stochastic Approximation Expectation Maximization (SAEM) Algorithm
The 'saemix' package implements the Stochastic Approximation EM algorithm for parameter estimation in (non)linear mixed effects models. The SAEM algorithm (i) computes the maximum likelihood estimator of the population parameters, without any approximation of the model (linearisation, quadrature approximation,...), using the Stochastic Approximation Expectation Maximization (SAEM) algorithm, (ii) provides standard errors for the maximum likelihood estimator (iii) estimates the conditional modes, the conditional means and the conditional standard deviations of the individual parameters, using the Hastings-Metropolis algorithm (see Comets et al. (2017)
- Version3.3
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- saemix citation info
- Last release03/05/2024
Documentation
Team
Emmanuelle Comets
Audrey Lavenu
Show author detailsRolesAuthorMarc Lavielle
Show author detailsRolesAuthorBelhal Karimi
Show author detailsRolesAuthorMaud Delattre
Show author detailsRolesContributorMarilou Chanel
Show author detailsRolesContributorJohannes Ranke
Sofia Kaisaridi
Show author detailsRolesContributorLucie Fayette
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports9 packages
- Suggests2 packages
- Reverse Imports3 packages