Installation
About
Object-oriented software for model-robust covariance matrix estimators. Starting out from the basic robust Eicker-Huber-White sandwich covariance methods include: heteroscedasticity-consistent (HC) covariances for cross-section data; heteroscedasticity- and autocorrelation-consistent (HAC) covariances for time series data (such as Andrews' kernel HAC, Newey-West, and WEAVE estimators); clustered covariances (one-way and multi-way); panel and panel-corrected covariances; outer-product-of-gradients covariances; and (clustered) bootstrap covariances. All methods are applicable to (generalized) linear model objects fitted by lm() and glm() but can also be adapted to other classes through S3 methods. Details can be found in Zeileis et al. (2020) doi:10.18637/jss.v095.i01, Zeileis (2004) doi:10.18637/jss.v011.i10 and Zeileis (2006) doi:10.18637/jss.v016.i09.
Citation | sandwich citation info |
sandwich.R-Forge.R-project.org/ | |
Bug report | File report |
Key Metrics
Downloads
Yesterday | 7.137 0% |
Last 7 days | 46.427 -21% |
Last 30 days | 204.190 +40% |
Last 90 days | 480.248 -12% |
Last 365 days | 2.168.781 -16% |
Maintainer
Maintainer | Achim Zeileis |
Material
In Views
Vignettes
Depends
R | ≥ 3.0.0 |