scINSIGHT
Interpretation of Heterogeneous Single-Cell Gene Expression Data
We develop a novel matrix factorization tool named 'scINSIGHT' to jointly analyze multiple single-cell gene expression samples from biologically heterogeneous sources, such as different disease phases, treatment groups, or developmental stages. Given multiple gene expression samples from different biological conditions, 'scINSIGHT' simultaneously identifies common and condition-specific gene modules and quantify their expression levels in each sample in a lower-dimensional space. With the factorized results, the inferred expression levels and memberships of common gene modules can be used to cluster cells and detect cell identities, and the condition-specific gene modules can help compare functional differences in transcriptomes from distinct conditions. Please also see Qian K, Fu SW, Li HW, Li WV (2022) doi:10.1186/s13059-022-02649-3.
- Version0.1.4
- R versionunknown
- LicenseGPL-3
- Needs compilation?Yes
- Qian K, Fu SW, Li HW, Li WV (2022)
- Last release05/29/2022
Documentation
Team
Kun Qian
Wei Vivian Li
Show author detailsRolesAuthor, Contributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports4 packages
- Linking To2 packages