semiArtificial
Generator of Semi-Artificial Data
Contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package 'RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.
- Version2.4.1
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- Last release09/23/2021
Documentation
Team
Marko Robnik-Sikonja
Insights
Last 30 days
This package has been downloaded 281 times in the last 30 days. Enough downloads to make a small wave in the niche community. The curiosity is spreading! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 7 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 3,854 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Jul 21, 2024 with 71 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports13 packages
- Reverse Imports1 package