semiArtificial
Generator of Semi-Artificial Data
Contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package 'RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.
- Version2.4.1
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- Last release09/23/2021
Documentation
Team
Marko Robnik-Sikonja
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports13 packages
- Reverse Imports1 package