serrsBayes

Bayesian Modelling of Raman Spectroscopy

CRAN Package

Sequential Monte Carlo (SMC) algorithms for fitting a generalised additive mixed model (GAMM) to surface-enhanced resonance Raman spectroscopy (SERRS), using the method of Moores et al. (2016) . Multivariate observations of SERRS are highly collinear and lend themselves to a reduced-rank representation. The GAMM separates the SERRS signal into three components: a sequence of Lorentzian, Gaussian, or pseudo-Voigt peaks; a smoothly-varying baseline; and additive white noise. The parameters of each component of the model are estimated iteratively using SMC. The posterior distributions of the parameters given the observed spectra are represented as a population of weighted particles.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends4 packages
  • Imports1 package
  • Suggests4 packages
  • Linking To2 packages