CRAN/E | sgmcmc

sgmcmc

Stochastic Gradient Markov Chain Monte Carlo

Installation

About

Provides functions that performs popular stochastic gradient Markov chain Monte Carlo (SGMCMC) methods on user specified models. The required gradients are automatically calculated using 'TensorFlow' , an efficient library for numerical computation. This means only the log likelihood and log prior functions need to be specified. The methods implemented include stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC), stochastic gradient Nose-Hoover thermostat (SGNHT) and their respective control variate versions for increased efficiency. References: M. Welling, Y. W. Teh (2011) ; T. Chen, E. B. Fox, C. E. Guestrin (2014) ; N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, H. Neven (2014) ; J. Baker, P. Fearnhead, E. B. Fox, C. Nemeth (2017) . For more details see doi:10.18637/jss.v091.i03.

Citation sgmcmc citation info
github.com/STOR-i/sgmcmc
System requirements TensorFlow (https://www.tensorflow.org/), TensorFlow Probability (https://www.tensorflow.org/probability/)
Bug report File report

Key Metrics

Version 0.2.5
R ≥ 3.0
Published 2019-10-24 1815 days ago
Needs compilation? no
License GPL-3
CRAN checks sgmcmc results

Downloads

Yesterday 0 -100%
Last 7 days 14 -53%
Last 30 days 74 -1%
Last 90 days 208 +9%
Last 365 days 857 -49%

Maintainer

Maintainer

Jack Baker

Authors

Jack Baker

aut / cre / cph

Christopher Nemeth

aut / cph

Paul Fearnhead

aut / cph

Emily B. Fox

aut / cph

STOR-i

cph

Material

README
NEWS
Reference manual
Package source

Vignettes

Gaussian Mixture
Logistic Regression
Multivariate Gaussian
Bayesian Neural Network
Getting Started

macOS

r-release

arm64

r-oldrel

arm64

r-release

x86_64

r-oldrel

x86_64

Windows

r-devel

x86_64

r-release

x86_64

r-oldrel

x86_64

Old Sources

sgmcmc archive

Depends

R ≥ 3.0
tensorflow

Imports

utils
reticulate

Suggests

testthat
MASS
knitr
ggplot2
rmarkdown