shrinkem
Approximate Bayesian Regularization for Parsimonious Estimates
Approximate Bayesian regularization using Gaussian approximations. The input is a vector of estimates and a Gaussian error covariance matrix of the key parameters. Bayesian shrinkage is then applied to obtain parsimonious solutions. The method is described on Karimova, van Erp, Leenders, and Mulder (2024) doi:10.31234/osf.io/2g8qm. Gibbs samplers are used for model fitting. The shrinkage priors that are supported are Gaussian (ridge) priors, Laplace (lasso) priors (Park and Casella, 2008 doi:10.1198/016214508000000337), and horseshoe priors (Carvalho, et al., 2010; doi:10.1093/biomet/asq017). These priors include an option for grouped regularization of different subsets of parameters (Meier et al., 2008; doi:10.1111/j.1467-9868.2007.00627.x). F priors are used for the penalty parameters lambda^2 (Mulder and Pericchi, 2018 doi:10.1214/17-BA1092). This correspond to half-Cauchy priors on lambda (Carvalho, Polson, Scott, 2010 doi:10.1093/biomet/asq017).
- Version0.2.0
- R versionunknown
- LicenseGPL (≥ 3)
- Needs compilation?No
- Last release10/05/2024
Documentation
Team
Joris Mulder
MaintainerShow author detailsDiana Karimova
Show author detailsRolesAuthor, ContributorSara van Erp
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages
- Suggests1 package