sjSDM

Scalable Joint Species Distribution Modeling

CRAN Package

A scalable and fast method for estimating joint Species Distribution Models (jSDMs) for big community data, including eDNA data. The package estimates a full (i.e. non-latent) jSDM with different response distributions (including the traditional multivariate probit model). The package allows to perform variation partitioning (VP) / ANOVA on the fitted models to separate the contribution of environmental, spatial, and biotic associations. In addition, the total R-squared can be further partitioned per species and site to reveal the internal metacommunity structure, see Leibold et al., . The internal structure can then be regressed against environmental and spatial distinctiveness, richness, and traits to analyze metacommunity assembly processes. The package includes support for accounting for spatial autocorrelation and the option to fit responses using deep neural networks instead of a standard linear predictor. As described in Pichler & Hartig (2021) , scalability is achieved by using a Monte Carlo approximation of the joint likelihood implemented via 'PyTorch' and 'reticulate', which can be run on CPUs or GPUs.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports20 packages
  • Suggests5 packages