sns
Stochastic Newton Sampler (SNS)
Stochastic Newton Sampler (SNS) is a Metropolis-Hastings-based, Markov Chain Monte Carlo sampler for twice differentiable, log-concave probability density functions (PDFs) where the proposal density function is a multivariate Gaussian resulting from a second-order Taylor-series expansion of log-density around the current point. The mean of the Gaussian proposal is the full Newton-Raphson step from the current point. A Boolean flag allows for switching from SNS to Newton-Raphson optimization (by choosing the mean of proposal function as next point). This can be used during burn-in to get close to the mode of the PDF (which is unique due to concavity). For high-dimensional densities, mixing can be improved via 'state space partitioning' strategy, in which SNS is applied to disjoint subsets of state space, wrapped in a Gibbs cycle. Numerical differentiation is available when analytical expressions for gradient and Hessian are not available. Facilities for validation and numerical differentiation of log-density are provided. Note: Formerly available versions of the MfUSampler can be obtained from the archive https://cran.r-project.org/src/contrib/Archive/MfUSampler/.
- Version1.2.2
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- sns citation info
- Last release11/02/2022
Documentation
Team
Alireza S. Mahani
Show author detailsRolesAuthorMansour T.A. Sharabiani
Show author detailsRolesAuthorAsad Hasan
Show author detailsRolesAuthorMarshall Jiang
Show author detailsRolesAuthor
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests2 packages
- Reverse Suggests2 packages